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Abstract

Terrain rendering is a complex but well understood process, which has largely been restricted to scientific 

visualisations, computer games, film and video. However, a new audience is developing within the GIS user 

community. Here various 3D presentation techniques are being used with ever larger spatial datasets. Also, 

detailed elevation models are now becoming widely available, allowing spatially referenced information to 

be combined with actual ground topology.

Ray tracing has been successfully used to render large outdoor scenes using realistic natural lighting. It has 

historically been viewed as a slow but high quality mechanism for 3D graphics, where a single image can 

typically take minutes, or sometimes hours, to generate. Where dynamic interaction with a 3D model is 

desired, an alternative method known as scan-line rasterisation is usually employed, often accelerated by 

graphics processing hardware. This technique for displaying terrain is by nature less realistic, but it is 

currently the only method employed by commercial GIS applications. As geo-spatial datasets increase in 

size the speed advantages of rasterisation diminish exponentially.

This study investigates the suitability of ray tracing as a viable alternative to hardware rasterisation for 

visualising large scale terrain datasets and establishes the computing resources required to produce images 

at interactive display rates. Wherever possible, the higher quality output methods available to ray tracing are 

retained, which adds a qualitative dimension to the case for adopting this technique. 

Use of parallelism is explored and exploited to achieve interactivity on a single PC using a recently 

developed multi-core CPUs. A careful investigation is made of the domain and functional decompositions 

possible within the ray tracing paradigm. The results demonstrate that interactive display can be achieved 

on modern dual core CPUs at quarter VGA resolution. This is achieved without reliance on display 

hardware, or extensive pre-processing of the scene data. It also predicts from extrapolation of the results, 

that full DVD quality could be achieved using a typical office network of modern personal computers and 

that the performance will scale in a near linear manner with the number of available processors.

iii



Table of Contents

Plagiarism Declaration.........................................................................................................................................i

Acknowledgements.............................................................................................................................................ii

Abstract..............................................................................................................................................................iii

Abbreviations....................................................................................................................................................vii

Chapter 1

Introduction.........................................................................................................................................................1

Project Aims...................................................................................................................................................4

Study Objectives.............................................................................................................................................4

Document Summary.......................................................................................................................................4

Chapter 2

Previous Research...............................................................................................................................................5

Ray Tracing's Origins.....................................................................................................................................5

Local Illumination Methods...........................................................................................................................5

Early Modern Ray Tracers.............................................................................................................................6

Parallel Ray Tracing.......................................................................................................................................7

GIS Terrain Data.............................................................................................................................................9

Terrain Rendering.........................................................................................................................................10

Atmospheric Shading Models......................................................................................................................11

Advanced Rendering Methods.....................................................................................................................12

Research Summary.......................................................................................................................................14

Chapter 3 

Theoretical Framework.....................................................................................................................................15

Rendering Model..........................................................................................................................................15

The Local Illumination Equation............................................................................................................15

Ray Surface Interactions..........................................................................................................................18

Anti-aliasing Techniques.........................................................................................................................21

Water Rendering Model...............................................................................................................................22

Atmospheric Attenuation Model..................................................................................................................24

Terrain Grid Tracing Model.........................................................................................................................27

Parallelism Model.........................................................................................................................................27

Chapter 4

Methodology......................................................................................................................................................30

Development Environment..........................................................................................................................30

Parallelism Tools..........................................................................................................................................32

iv



Development Process...................................................................................................................................32

Testing Procedure and Performance Analysis..............................................................................................33

Chapter 5

Findings.............................................................................................................................................................34

Thread Configuration Analysis....................................................................................................................34

Resolution Analysis......................................................................................................................................35

Terrain Size Analysis....................................................................................................................................35

Other Observations.......................................................................................................................................36

Chapter 6

Conclusion.........................................................................................................................................................37

Research Reflections....................................................................................................................................37

Further Work.................................................................................................................................................38

Final Summary.............................................................................................................................................40

References.........................................................................................................................................................41

Bibliography......................................................................................................................................................44

Ray Tracing, Rendering and Geometry........................................................................................................44

Parallel Theory and General Programming.................................................................................................47

Additional Background Information............................................................................................................47

v



Table of Figures

Figure 1: Simulated Grand Canyon sunset rendered from USGS DEM data....................................................1

Figure 2: The visual components of the Phong equation.................................................................................16

Figure 3: Comparing constant and Nz modulated ambient terms....................................................................17

Figure 4: Point source shadows compared with area shadows at 8 and 256 sample rays...............................18

Figure 5: Ray surface interaction diagram........................................................................................................18

Figure 6: Cornell box illustrating reflection, refraction and soft shadows......................................................21

Figure 7: Small renders illustrating supersampling methods...........................................................................22

Figure 8: Lake District OS NTF data flooded to 200m to demonstrate water shader.....................................23

Figure 9: Yosemite USGS DEM renders comparing atmospheric models......................................................25

Figure 10: Sunrise over the Lake District from OS NTF data.........................................................................26

Figure 11: Terrain tracing showing solid grid edge..........................................................................................27

Figure 12: Experimental Renderer parallelisation model.................................................................................28

Figure 13: Lazarus IDE running on Kubuntu desktop.....................................................................................31

Figure 14: Thread performance analysis graphs...............................................................................................34

Figure 15: Image resolution analysis graph......................................................................................................35

Figure 16: Terrain size analysis graph..............................................................................................................35

Figure 17: Non-planar quadrangles in Lake District data................................................................................39

vi



Abbreviations

2D Two Dimensional

3D Three Dimensional

API Application Programming Interface

BRDF Bidirectional Reflectance Distribution Function

BMP Bit Mapped Picture (graphic file format)

CISC Complex Instruction Set Computer

CPU Central Processing Unit

DEM Digital Elevation Model (a USGS defined terrain elevation data format)

DVD Digital Versatile Disk (a disk format and video standard similar to VGA)

FPS Frames Per Second

GADD Geometric Atmospheric Density Distribution

GIS Geographic Information Systems

HDR High Dynamic Range

IBM International Business Machines

IDE Integrated Development Environment

JPEG Joint Picture Engineering Group (graphic file format)

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

NTF National Transfer Format (OS spatial data encoding file format)

OpenGL Open Graphics Library (programming interface specification)

OS Ordnance Survey (UK governmental mapping agency)

PC Personal Computer

PNG Portable Networked Graphics (graphic file format)

RGB Red, Green, Blue (triple value colour representation system)

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SSE Streaming SIMD Extensions

TCP Transmission Control Protocol

USGS United States Geological Survey

VGA Video Graphics Array (a standard display resolution of 640x480 pixels)

vii





Chapter 1

Introduction

“Some applications of computer graphics require a vivid illusion of reality.”

It is unlikely that Arthur Appel was able to conceive the full significance of this statement when he wrote it 

back in 1968 whilst working for the IBM Research Centre (Appel 1968). Neither could he have foreseen 

how quickly his theoretical insights would have translated into common-place technology. For thanks to the 

exponential development of computing power, sophisticated computer graphics systems are now available 

as cheap consumer devices. Indeed his vision of synthetic imagery was primarily directed at high end 

manufacturing and architectural visualisation. The now common uses in data presentation and, most of all, 

entertainment would have seemed inconceivable at a time when CPUs were rated in kilo Hertz and required 

elaborate programs to perform even basic multiplication or division.

There are two1 fundamental methods for generating 3D images that have been developed by computing 

researchers. The first is referred to as scan-line rasterisation and the second ray tracing2. Rasterisation 

projects a scene's three dimensional geometry into two dimensional figures that are then drawn to the 

image. The order of drawing has to be carefully controlled so that the final picture contains the objects 

1 Assuming pure vector graphic displays can be ignored, as they are now no longer in general use. 
2 The actual term ray tracing has come to have a more precise meaning that will be discussed later. It is used here in the 

looser sense of any method that determines image pixel colouration by direct projection into a 3D scene.
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correctly arranged by distance into the scene. Alternatively, an ancillary buffer may be employed, generally 

called the Z buffer, to mask drawing operations that should be concealed by elements already rendered. Ray 

tracing, by contrast, attempts to reconstruct the actual three dimensional ray3 paths from the view point 

directly into the 3D model of the scene, for each image pixel.

It was quickly appreciated that whilst ray tracing had the potential to generate visually more sophisticated 

images, it had a far higher computational cost than an efficient scan-line algorithm. Consequently, almost all 

interactive 3D development has relied on rasterisation. Interestingly though, Appel (1968, 37) also 

observed:

“If techniques for the automatic determination of chiaroscuro with good resolution should 

prove to be competitive with line drawings, and this is a possibility, machine generated 

photographs might replace line drawings as the principle mode of communication in 

engineering and architecture.”

This is indeed the acid test: Can ray tracing now be competitively compared to rasterisation? Ray tracing 

has long been known to have a logarithmic time complexity with respect to scene size4, whereas 

rasterisation has a linear time complexity (Rubin and Whitted 1980). This suggest that, however much 

slower ray tracing is, there must be a break-even point as the scene size increases. It has taken over thirty 

years for hardware advances to bring the computing world to the point where it is worth reconsidering this 

issue. In fact, it is perhaps worth re-stating the question as: have 3D scenes grown to a size that their data 

would be more efficiently visualised by ray tracing?

This study restricts itself to considering the potential uses of ray tracing in the field of GIS data terrain 

rendering. This is a rapidly growing field which is demanding ever greater sophistication in its visualisation 

techniques. To quantify the factors involved for this scenario an experimental software system was 

developed containing a parallel terrain ray tracer and an OpenGL based hardware rasteriser. With this, it is 

possible to directly compare the two methods of rendering for any given scene.

Whenever computing performance is being analysed the hardware platform must be considered as this will 

have an a priori influence upon execution times. CPU manufacturers have been struggling in recent years 

with two design issues. Firstly, CPUs with high clock rates generate a lot of heat. Effectively dissipating this 

heat is proving very difficult, especially in small form factor systems, such as laptops. Secondly, the 

increased processing power of these faster chips can rarely be matched by sustained communication with 

other parts of the system without drastically increasing the manufacturing cost. This leads to the general 

3 A ray in this context is the geometric representation of a 3D line segment using an origin point and a direction vector, often 
accompanied by other qualitative data required by the rendering algorithm.

4 This is true assuming the scene is spatially partitioned using an algorithm that exhibits logarithmic spatial access, such as 
octrees, binary space partitions, or bounding volume hierarchies.
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under-utilisation of the CPU in most desktop computers as they idle waiting for input. In response to these 

concerns, chip development has shifted towards adding multiple processing cores rather than just increasing 

clock speeds to prevent the stalling of Moore's Law5.

Unfortunately though, multi-core processors can only convey their performance benefits to software that is 

designed from inception for parallel execution. Conventional rasterisation is not ideally suited for 

parallelism, whereas ray tracing is often cited as an example of an embarrassingly parallel6 process (Allen 

and Wilkinson 2005, Günther et al. 2004). Thus if this hardware development trend continues, it will only 

serve to favour ray tracing in the medium to longer term. On the other hand, thanks to the popularity of 3D 

games, most modern consumer PCs contain dedicated hardware for rasterisation. So, at present, it enjoys a 

significant performance advantage, but only provided the scene data can be transferred at a rate 

consummate with the desired display frequency. These hardware issues will be discussed further and have 

considerable impact upon the experimental results.

Since parallel processing has the potential to tip the balance in the favour of ray tracing, it was essential to 

make this design method the foundation of the experimental renderer. Parallelism is, in essence, the 

subdivision of one large sequential task into a group of smaller concurrent tasks and thus achieves shorter 

execution times by being limited only by the length of the longest of the concurrent tasks. In short it is the 

computing application of the ancient maxim “divide and conquer!”. Obviously, this does require the 

existence of multiple processing units capable of simultaneous operation. Therefore the usefulness of 

parallel processing on conventional single CPU PCs is somewhat moot, but as will be discussed later, it is 

still possible to make use of this existing processing power, in an office network context, by taking 

advantage of clustering methods.

There are two approaches for writing parallel programs, domain and functional decomposition. Domain 

decomposition, alternatively known as data partitioning, is concerned with the subdivision of the task's 

input data into smaller chunks which may then be processed simultaneously by separate but identical 

processing units. Functional decomposition, on the other hand, is the restructuring of the program's 

algorithm into loosely coupled procedures that exhibit some form of concurrency that may be exploited 

across multiple processing elements, rather in the manner of a factory production line. This is generally 

regarded as a much harder process to perform (Allen and Wilkinson 2005, 106) as it requires much more 

careful coordination between the tasks and the data they process. Both forms of decomposition can be 

implemented at different levels of granularity. Also, it is quite common for problems to exhibit less 

opportunity for functional than domain decomposition.

5 That CPU processing power (actually circuit densities) will double every eighteen months to two years for a given 
manufacturing unit cost (Intel Corp. 2006a).

6 A term invented by Geoffrey Fox (Fox, Messina and Williams 1994, chp. 7), in an early publication on parallel computing, 
to classify a problem that has a self-evident parallel implementation.
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Project Aims

The aim of this study is to investigate the application of ray tracing to terrain rendering by the development 

of an experimental rendering application. This is used to assess the specific objectives, but also to form the 

basis for ongoing research into this rapidly developing field. It additionally provides an opportunity to 

expand the authors software development skills and gain experience in cross-platform programming.

Study Objectives

From an academic point of view there are two objectives. Firstly to provide a solid assessment of the real 

performance benefits achievable from applying parallelism to a terrain ray tracer. It is hoped that it will add 

to the growing body of evidence that contradicts Amdahl's law (Allen and Wilkinson 2005, 12; Günther et 

al. 2004, 9). The second objective is to assess the usefulness of functional decomposition within the realm 

of ray tracing, as this does not seem to have enjoyed much treatment in the academic literature.

Additionally, a professional objective exists. This is to assess the overall 'usefulness' of such a process to the 

commercial GIS world. This consideration should be twofold: is it a capable technique on current hardware 

and will it scale well to hardware that might be expected to be available in a year or two? In many ways the 

future question is the most important since it may well take that kind of time-scale to develop a production 

version of the renderer.

Document Summary

● Chapter 2 details the previous relevant work carried out in the fields of ray tracing, terrain 

visualisation, parallel ray tracing and advance image generation.

● Chapter 3 describes the theoretical models adopted for use in the studies experimental software 

system.

● Chapter 4 covers the methodology employed to create the renderer and defines the metrics used to 

quantify the experimental results.

● Chapter 5 presents the performance data obtained from the experimental system.

● Chapter 6 Analyses the results and discusses the implications for the aims and objectives of the 

study. It also contains reflections on the methodology employed and future directions suggested by 

this work.
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Chapter 2

Previous Research

Four areas of prior academic work are pivotal to this study. Firstly, the classic papers on ray tracing were 

revisited. This was primarily to develop a clear foundation in the field, but also in recognition of the fact 

that it would not be possible to implement all of the latest techniques in the time-scale available for this 

project, so this material was most likely to inform the practical design of the test renderer. The second body 

of work concerns any previous investigations of parallel rendering as this is clearly germane. Thirdly, given 

the practical goal, previous research on terrain rendering and visualisation, especially ray tracing based 

methods would be very useful. Lastly, recent developments in photo-realistic synthetic image creation were 

reviewed to keep abreast of the state-of-the-art. A long term goal is to include as many of these new features 

as possible, as the qualitative advantages of ray tracing should not be forgotten in the quest to achieve 

interactive rendering.

Ray Tracing's Origins

It is not now clear who first coined the term 'Ray Tracing'. It was certainly in use in computer papers as 

early as the 1960s. Indeed Turner Whitted who is usually cited as the father of modern ray tracing, himself 

cites several earlier works, most notably Appel (1968), who already used the term, but often without any 

precise intended meaning. The genesis of the idea seems to have occurred as a response to the limitations of 

scan line rasterisation1. It was realised that many of these limitations could be overcome by more closely 

modelling the actual optical processes of light transport. In fact an early motivating issue appears to be the 

search for a universal method for introducing plausible shadows to 3D images. Appel, whilst working for 

IBM, published several interesting papers on creating images by ray-path methods. Indeed, the main 

limiting factor on his work seems to be the computing capacity available to him.

Local Illumination Methods

A key aspect of all 3D rendering techniques is the determination of the surface colouration of objects in a 

given scene. Initially, 3D computer graphics simply used Lambert's well known cosine law as the basis for 

surface shade determination. This was borrowed directly from optics theory and could be cheaply 

implemented in even a primitive shading system as the cosine is easily calculated by taking the inner vector 

product2 of the surface normal with the lighting direction vector.

1 It is beyond the scope of this study to discuss the scan-line process or its limitations in detail, but suffice to say the 
performance is bound by the scene size, since all drawing elements (or at least a given proportion of them) need to be 
considered by the renderer, the rasteriser is thus performance bound by the scene size. Additional issues surround handling 
transparency, reflections and shadows. This process is very well documented in computer graphics primers (Davis et al. 
1999, 10-14; Watt 1989, 97-113). It should also be noted that it is the fundamental process employed by modern computer 
3D display hardware and it is the mechanism behind the widely implemented OpenGL graphics programming library.

2 Also known as the dot product. for brevity dot product will be used subsequently.
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It was widely noted that naïve use of Lambert's Law created scenes where all objects were limited to 

perfectly diffuse reflectors3. Clearly the real world contained many more elaborate surfaces than this. Bui 

Tuong Phong (1973) in his Ph. D. thesis introduced an enhanced lighting equation which was quickly 

adopted as a useful standard by the graphics world. It added additional terms to the Lambert equation to 

allow for ambient light and specular highlights.

This provided the simulation of a far wider range of surfaces than was previously possible, without 

burdening the shading algorithm with too much additional computation. The Phong illumination model has 

been subsequently refined by Jim Blinn (1977) to optimise its computation and more closely mimic 

observed highlights on specular materials. This newer form is now known as the Blinn-Phong shading 

model and it is the calculation used within the OpenGL lighting specification.

There has been considerable further work to advance the physical accuracy of illumination calculations. 

Most of these methods are derived from a theoretical understanding that specular surfaces are composed, at 

a microscopic level, of randomly arranged angular facets. The degree of roughness of these micro-facets 

directly determines the degree of diffusion of the resulting specular highlight. Several researchers have 

produced illumination models on this basis, the most widely used being the one proposed by Cook and 

Torrance (1982). This is the method usually employed in high-end rendering systems that seek to emulate 

the widest range of material types. The extra computational burden required does not make it suitable for 

interactive systems. For this reason, the Phong model and its variants are still the most widely used local 

illumination models today. It should be also be noted that any local lighting model may be used for scan-

line rendering as well as ray tracing as they restrict themselves to calculating surface colouration without 

consideration of the wider scene geometry.

Early Modern Ray Tracers

As for the development of ray tracing itself, it was Turner Whitted (1980) who was the first to propose a 

recursive algorithm as an elegant solution to determining the reflection and transmission ray paths through a 

scene. This process employed the Phong illumination model for surface lighting and in so doing, became 

the first system containing all of the archetypal features of a classic ray tracer.

A further improvement to this was later introduced by Carpenter, Cook and Porter (1984) called 'distributed 

ray tracing'. This traces more than one ray per pixel and more than one ray per surface interaction. These 

variations are perturbed slightly, and the results averaged. In this way it is possible, at the cost of 

proportionately longer render times, to add anti-aliasing, blurred reflections and refractions, depth of field, 

motion blur and soft shadows to a rendered image. The modern terminology used in computer graphics now 

appears to be that pre-Whitted, non-recursive processes are referred to as 'ray casting' and 'ray tracing' is 

3 Real examples of such dull surfaces would be matt paint or plain paper.
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reserved specifically for the Whitted algorithm and its various offspring. Lastly it is worth noting that most 

research into ray tracing is initially published via SIGRAPH (the Special Interest Graphics Group) or 

announced in Ray Tracing News (Haines 2004).

Parallel Ray Tracing

By contrast to the well established understanding of ray tracing, parallel rendering is still a relatively new 

phenomenon. There are only a few printed texts available concerning the practical implementation of a 

parallel rendering system, the key work being: 'Practical Parallel Rendering' (Chalmers et al. 2002). 

Nonetheless, there are many researchers actively investigating this field who are making their work 

available through specialist journals and via the internet. Two academic interest groups have formed around 

the topic: the 'Parallel Rendering Symposium' and the 'Euro-graphics Workshop on Parallel Graphics & 

Visualisation' (Chalmers et al. 1998, 20). These appear to be the current foci for activity in this field. 

The first successful parallel renders made use of highly parallel, shared memory supercomputers. Indeed, 

their genesis stemmed from the goal of achieving real-time rendering (Slusallek and Wald 2001, 25). These 

systems were successful in generating VGA quality images at animation frame rates. However, their 

reliance on very expensive specialist hardware platforms restricts their wider usefulness. 

More recently, similar results have been achieved on clusters of commodity PCs (Slusallek and Wald 2001). 

This has led to the establishment of the OpenRT project (Wald n.d.) which aims to define an API for ray 

tracing that is analogous to the rasterising API of OpenGL. Unfortunately, this is a closed source 

commercial endeavour and the proprietary nature of this interface may stifle its wider adoption. Recently an 

alternative open source project, called Manta, has been established (Bigler, Parker and Stephens 2006). This 

might prove to be a good common basis for ongoing research, although it is still too early to tell if it has 

succeeded in this respect.

So, within parallel renderers that have been developed, which methods have proved most successful? It 

should be noted that both domain and functional decompositions can be applied at different levels of 

granularity. In the case of domain decomposition, granularity refers to the size of the data chunks processed 

by individual tasks. Data partitioning has successfully been used at various levels of granularity in the 

parallel ray tracers investigated for this study. This should not be so surprising given the embarrassingly 

parallel nature of ray tracing. Furthermore, for shared memory systems where the scene data does not need 

any complex additional management, reports of near linear performance scaling are the norm (Chalmers et 

al. 1998, 190, 191 and 245). In one instance an unexpected super-linear performance was observed with the 

Kilauea renderer (Chalmers et al. 1998, 317). This seems to be the case for at least 20 processing units and 

for some of the parallel supercomputer systems this remains true for the total number of processors in the 
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system. There is not yet any consensus as to an optimal level of data granularity. Indeed, the lack of clear 

consensus suggests that the optimum is specific to the application data and not a fundamental of the 

algorithm.

Functional decomposition granularity is the extent of the algorithm encoded in the task. This is not as fluid 

as data granularity since the algorithmic structure of the problem places constraints on how the function 

may be divided. However, there are three broad levels of functional granularity that can be identified. 

Firstly there is instruction level parallelism. This is where individual CPU instructions are arranged for 

execution separately within a hardware MIMD, or MISD parallel system. On SIMD CPUs instructions can 

still perform certain tasks, such as array manipulations in parallel. Indeed, many SISD CPUs are now 

starting to add special instructions for performing SIMD operations, such as the Pentium SSE instructions 

(Intel 2000). This obviously requires re-writing the core algorithmic code and in the case of dedicated 

instructions, may require restructuring of the data so that it can be accessed in instruction ordered arrays. 

There have been attempts to automate this process as part of compiler design, but this has proved to be an 

exceptionally complex task (Chalmers et al. 1998, 32), so at present, such optimisation is usually performed 

by hand. Despite this, several parallel renderers (Benthin, Dietrich et al. 2003; Bigler, Parker, and Stephens, 

2006; Wald n.d.; Benthin, Slusallek et al. 2001, 156) include elements of instruction level parallelism and 

on PC cluster systems the SSE instructions find wide use in optimising vector arithmetic, allowing for the 

simultaneous processing of several (usually four) rays at once. This is usually referred to as a ray bundle. 

Unfortunately this does have the undesirable side effect of preventing the source code from being portable 

between different processor architectures.

It should also be mentioned that CISC processors are also starting to incorporate other forms of inherent 

instruction level parallelism, the benefits of which are gained without any special coding requirements. An 

example of this is the Pentium hyperthreading (Intel 2006b) facilities of Intel's latest chips.

The next level of functional decomposition is algorithmic decomposition, here as within structured 

programming, the process is rearranged into discrete, loosely coupled procedures which are then pipe-lined. 

This has not received much direct attention in ray tracing research. Perhaps there has been an implicit 

understanding that this would be less useful as the ratio of inter-task communication to computation 

performed would be very high for ray tracing. This is because the actual core code of the ray tracing 

algorithm is quite small, so there is not much to divide. The only example found was the Kilauea renderer 

(Chalmers et al. 2002, 249-327) which functionally decomposes shader execution from other tasks such as 

acceleration grid parsing, or file access. This is not done for any stated performance gain, but to enable the 

creation of shaders in isolation from the complexities of the task scheduling mechanism (Chalmers et al. 

2002, 282). Indeed, the ray tracing and shading tasks within a Kilauea process element execute strictly in 

serial, so if subsequent rays are required such as shadow rays, the shading task will stall until the 
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subordinate tracing tasks return. Parallelism is achieved by assigning multiple task stacks to a single 

processing element, thus ensuring continuous processor activity. It is unlikely that there is any actual 

performance benefit from this over a simpler data domain only approach.

The largest level of functional granularity is where the whole computational task executes concurrently with 

other application tasks. This is not directly applicable to the rendering subsystem, but is applicable to the 

host application. A good example would be the asynchronous screen update in a frameless rendering 

scenario (Slusallek and Wald 2001, 26). Here the code to update the screen can run as an independent 

process, reading the image buffer at intervals, while the ray tracer can run writing to the buffer without 

interruption or coordination. This type of mechanism is also useful in non-interactive rendering situations to 

provide visual feedback about the current task progress. finally it should be noted that the consensus view of 

researchers seems to be that domain decomposition offers far better performance gain than does algorithmic 

decomposition and this is certainly borne out by the amounts of research carried out in each area.

GIS Terrain Data

The field of Geography has not been slow to appreciate the usefulness of computing resources. Many 

complex systems have been developed that display conventional cartography as 2D graphics with great 

sophistication. In deed, most of the worlds cartographic organisations now use software systems to produce 

their mapping products. Many also provide electronic products that often contain other geo-referenced data 

that could not be easily displayed in 2D cartography.

The representation of ground topology is one such product. In traditional mapping this would have to be 

represented as some form of special iconography, such as relief shading, gradient hatching, or contour lines. 

Using computers though, this information can be directly represented as a 3D render. Indeed additional 

information is being increasingly added to 3D plots and there is an increasing trend towards full realistic 

scene visualisation. This may be overlaid with details that may be real landscape features such as foliage 

and buildings, or other abstract information created by spatially referencing other classes of data.

There isn't sufficient space in this study to examine the development of digital cartography, but mention 

should be made of the particular data type that facilitates the use of 3D rendering: the digital elevation 

model. The original pioneers of DEMs were the US Geological Survey. They defined the original DEM file 

format for transfer of this type of geographic dataset. The USGS has a very public service orientated 

approach to their datasets and make them freely available over the internet (USGS 2004). Unfortunately the 

UK equivalent4 from the Ordnance Survey (2007), is not so easily obtainable although in recent years they 

have been extending special licences for academic research and pan-governmental GIS usage. The actual 

data of a DEM consists of a 2D array of elevation values. These values are also accompanied by data about 

4 Land-Form PROFILE digital terrain model in NTF format.
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the real-world location and intervals of the data points, sometimes referred to as the post spacing. To 

visualise this data the elevation values have to be converted into 3D points that are then used as the vertices 

of a mesh of triangles.

Terrain Rendering

As for terrain visualisation research, most of it has been targeted at hardware rasterisation. Here 

optimisations are achieved by reducing the number of polygons that must be rendered by the graphics pipe-

line. This can be achieved either by simplifying the terrain tessellation, or by identifying sections of the 

geometry that are occluded and trimming these from the display list. Production systems often employ both 

mechanisms. On systems with good hardware acceleration, a terrain grid of two million triangles can be 

displayed at a rate of at least 30fps by using these methods. In reality, it is processing nothing like that 

number of triangles, perhaps ten to twenty thousand after simplification and culling.

In games programming, where much of this technology is employed, it is common practice to assess the 

actual 'polygon budget' (Wikipedia 1996) and design the game environments so that they stay within this 

size. There isn't sufficient scope to cover scan-line solutions beyond these cursory observations, however 

the Virtual Terrain Project (Discoe 2001) is an excellent resource for OpenGL based terrain rendering and a 

good portal for terrain visualisation in general. It has a rendering section where all of the major techniques 

are outlined and links to projects that employ them.

The ray tracing of height fields has also enjoyed some useful research, by virtue of landscape rendering 

being a very popular subject for the process5. Most of the early work was concerned with fidelity rather than 

speed, but now there is a good range of methods that provide efficient traversal of the terrain data 

(Musgrave 1988; Kaufman, Qu et al. 2003; Qu, Qiu et al. 2003; Henning and Stephenson 2004 and others). 

Since they all exploit some form of the spatial coherence of the height field's data, they all yield 

performance in logarithmic time complexity, thus showing excellent performance with increase in dataset 

size. In fact, Musgrave (1988, 9) noted, even in the 1980's, that the only significant limiting factor on terrain 

ray tracing, was available system memory.

In Chalmers (1998) review of parallel rendering, two instances of terrain rendering were reported. The first 

was by Parker who used a 256 CPU supercomputer to animate very large terrains in real-time. His findings 

not only support the linear scaling of performance, but demonstrate excellent sub-linear performance with 

scene size. In his tests increases in data size by a factor of 4 only decreased performance by 3% (Chalmers 

et al. 1998, 215). He also reports rendering scenes of 17 billion terrain quadrilaterals! The second use was 

by Slusallek to benchmark the RTRT renderer against various hardware rasterisers. He observed linear 

scaling and that for a 2 CPU system, the break-even scene size was at approximately one million triangles.
5 As shown by the niche market for offline terrain scene renderers such as Vue d'Esprit (E-on Software 2007), Terragen 

(Planetside 1998) and MojoWorld (Pandromeda 1999).  Pandromeda is actually a commercial outlet for Ken Musgrave's 
research activities.
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It should be noted that ray tracing is not restricted to visualisation of planar polygons in the way that scan-

line processes are. In fact, height field visualisation is actually an example of signal reconstruction and 

triangular tessellation is only one of a number of surface reconstruction strategies that may be applied. 

Henning and Stephenson (2004, 257) provide a useful summary of techniques commonly employed from 

voxel visualisation to fitting a bilinear patch. This is quite a complex issue and an area that would merit 

much further research as there is still room for improvement both in terms of performance and surface 

quality.

Atmospheric Shading Models

For realistic landscape rendering purposes, atmospheric lighting phenomena are as important as terrain 

intersection. Humans rely on binocular vision to judge distance at close range, but this becomes ineffective 

once the parallax of a foreground object cannot be detected against its immediate background. At this point 

the brain entirely relies upon the subtle softening of contrast, the cooling or warming of tones and the 

intensity of shadows to make any judgement about distance and scale for a scene where the viewer has no 

prior local knowledge. This is a key psychological factor and its impact on scene perception should not be 

underestimated.

This perception was well understood by classical landscape painters and they developed a technique to 

model the phenomena which is called aerial perspective (Ebert, Musgrave et al. 1998, 361). In paintings, 

this is applied by the artist's judgement and observation, but for computer graphics, it is achieved by 

mathematically modelling the optical processes causing the effect. The fidelity of the model to the actual 

optical processes directly controls the visual effectiveness of the resulting image. Atmospheric models can 

vary quite considerably in complexity and precision. As with many other computer algorithms there is a 

dichotomy between accuracy and performance.

The simplest model is based upon the gross observation that objects grow fainter with distance. Indeed, this 

is a very common model and is supported in most rasterisation hardware. In OpenGL this rendering effect is 

known as fog (Davis, Heider et al. 1999, 242). It is quite common to find landscape rasterisers that use fog 

as a basic approximation for aerial perspective, or to simply hide the far clipping pane6 (Nielsen 2003, 106). 

This fogging method is inadequate as an approximation for two main reasons: real aerial perspective varies 

logarithmically with altitude7 and the fog colour is not constant but the sky colour in that direction (Nielsen 

2003, 41). The latest generation of OpenGL hardware can now implement custom fogging by use of 

fragment shaders to perform these calculations, but it is still not commonplace and it does not integrate into 

the existing framework as elegantly as within a ray tracer.
6 The OpenGL Z buffer can represent objects between two distances from the view point, referred to as the near and far 

clipping panes. Due to the finite range of the Z buffer depth values, the distance of the far clipping plane is constrained by 
the detail of the scene's foreground objects. If it has to be closer to the view point than the natural horizon, all terrain and 
objects beyond the far plane cannot be rendered. This causes a very gross rendering artefact where things appear or 
disappear depending on whether they have crossed the far clipping plane as the view point changes.

7 As can be seen in the first image of Figure 10 where the top of Mt. Adams is clearer than the terrain at its feet.
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Musgrave, Gritz and Worley (Ebert, Musgrave et al. 1998, 361-371) discuss the development of 

increasingly accurate, but computationally more expensive atmospheric models. In essence, aerial 

perspective, in fact the sky colour itself, are caused by the differential scattering of light at different 

wavelengths. Ultimate visual fidelity can only be achieved by careful analysis of all of the optical 

mechanisms at work in the atmosphere and performing volumetric integration on this model for the ray. 

Unfortunately this is too complex to be performed in real-time.

Nishita (Dobashi et al. 1996) proposed a thorough model for this process by isolating the contributing 

factors to both single and multiple scattering that occur due to atmospheric particles. Before it hits the 

atmosphere, sun light is effectively white. The more atmosphere it has to penetrate, the more light that gets 

scattered out of it's optical path. This is more accentuated for light waves at the blue end of the spectrum. 

This accounts for the sky background colour, as this is the scattered blue sun light. It also accounts for the 

reddening of the sun as it sets as it has to pass through a greater depth of atmosphere and thus loose more of 

its blue light. The physical processes involved are Rayleigh and Mie scattering. Rayleigh scattering 

accounts for the blue light scattering due to interaction with air molecules. Mie scattering is the effect of 

larger particles such as dust or pollution, which is responsible for visual haze and other discolourations. 

This work has formed the core of most subsequent attempts at generating realistic skies. The typical 

solution involves some form of pre-computed sky-dome or 3D texture to store pre-computed atmospheric 

values, which are then interpolated at render time. Humphreys and Pharr provide a very thorough discussion 

of the practical implementation of a multiple scattering volume renderer with a concise summary of 

research in this field (2004, 803-817). Ertl, Falk and Schafhitzel (2007) have managed to perform real-time 

atmospheric shading including Mie and Rayleigh scattering as an OpenGL vertex shader. However, they did 

need to pre-compute a 3D scattering texture on a per-frame basis as they have also concluded that per-

vertex scattering computations cannot yet be performed in real-time (Ertl, Falk and Schafhitzel 2007, 3).

Advanced Rendering Methods

Lastly it is worth mentioning the most significant advances in 3D rendering since the establishment of ray 

tracing. Several methods have been developed that attempt to model the extremely complex problem of 

diffuse inter-reflections. In scenes with strong sources of direct lighting, the assumption of a constant 

ambient level may be acceptable, but in scenes that predominantly rely on indirect lighting, a constant 

ambient level creates unnaturally flat images. Duerer (2003) maintains an excellent resource called the 

'Global Illumination Compendium'. This provides the key formulae for all of the advanced algorithms 

discussed here.
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The Radiosity method was developed independently of ray tracing, and for some time was even regarded as 

a competing method. However, it is now normally employed in generating ambient lighting information, 

either for pre-calculated lighting for rasterisation8, or as preprocessing step to conventional ray tracing, 

where the radiosity solution is sampled to supply the ambient term.

This method is simply the process of splitting all geometry into small patches, then for each patch in turn, 

the scene is rendered and the radiance received by the patch is recorded with the patch. This process is 

performed iteratively, so that patches illuminated in the prior cycle get to add their contribution to the next. 

Eventually, if sufficient cycles are performed, the scene reaches an equilibrium and a very accurate estimate 

of the diffuse inter-reflection is obtained. As may be imagined, this whole process is computationally, very 

expensive, from deciding how to subdivide the geometry into patches, to determining when to accept a 

solution as complete. There is considerable research around the parallisation of the radiosity method. 

Path tracing, or forward ray tracing, is another attempt at directly modelling light diffusion. This works by 

tracing the actual path of all9 light rays through a scene. All of their interactions with participating media, 

reflections and refractions are followed and, if the ray passes through the image plane, it is recorded. This is 

the reverse process of the Whitted method which back-tracks the rays required by the target image. If 

sufficient rays are generated by each light source, the results are very impressive. However, the render times 

are extremely long, even by comparison to radiosity. 

There have been many attempts at speeding up path tracing, mostly by trying to predict useful ray paths, 

rather than generating millions of rays and only a small proportion of them usefully contributing to the final 

image. Monte Carlo integration techniques are commonly used to estimate surface irradiance with far fewer 

rays than purely stochastic path tracing (Kajiya 1986). Similaly there have been several techniques that try 

to identify key paths and explore these through the scene. This is often called bi-directional path tracing.

Photon mapping is another variant of path tracing developed by Henrik Jensen (2001) that traces the 

photons (rays with associated radiant energy) into the scene and records all surface interactions of the 

photons into a 3D data structure called the photon map. This map is generated as a pre-process step before a 

conventional ray tracing pass. At each surface intersection in the trace, the ambient term is determined by an 

estimation from statistically analysing the colour and strength of neighbouring photons in the photon map. 

The two key advantages of photon mapping are that it generally requires fewer photons to be traced than 

rays in stochastic path tracing and the photon map can be stored independently from the scene geometry 

which makes for much easier implementation. There are many variations and optimisations possible for 

photon mapping and this is an active field of research.
8 This is very common in state-of-the-art computer games. The level models have a radiosity solution performed upon them 

and this is then used to shade the model at runtime. The visual effect is very impressive, but can be quickly flawed by any 
dynamic change in the scene not being reflected in the lighting.

9 Obviously it is not practical to follow all light rays, so a statistically significant sample are used instead. Even so the 
number of ray paths that need to be traced is vast and only a small proportion actually contribute to the scene from the view 
point.
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It is finally worth noting that all photo-realistic rendering methods are effected by the limited dynamic 

range of display systems. A monitor is simply not capable of capturing all of the variations in brightness and 

contrast that could occur in a real world scene. In practice, these variations have to be compressed into the 

range that is available. This is similar to the exposure control of a camera selecting an optimum range for 

film to minimise under or over exposure.

Research Summary

Initial work on computer graphics started in the 1960's and may of the key issues were identified then. 

However, it was not until the early 1980s that the first true ray tracing systems were developed. These 

generate computer images by mimicking the paths of light rays around a 3D scene, calculating the the 

optical effects they encounter along the way. The key theorists in this field were Phong and Whitted who 

between them developed the core of systems used today.

This work has been enhanced by many researchers to produce very high quality photo-realistic images. 

These techniques have been easily adapted to take advantage of hardware developments, especially in the 

field of parallel computing where ray tracing is an excellent example of a practical application for this 

technology.

Geographic systems have been developed that display conventional cartography as 2D graphics. Methods 

have evolved to represent 3D terrain data in mapping contexts and this is evolving into full 3D visualisation. 

To date, this visualisation has been achieved by other methods than ray tracing. However, the increasing 

size of GIS datasets and increases in the parallel processing power of modern computers are making ray 

tracing an increasingly attractive option.
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Chapter 3

Theoretical Framework

Having reviewed the published research concerning ray tracing and its parallisation, a framework needed to 

be established with which the experimental renderer could be implemented. The key theoretical models that 

are needed for this software system are described here. Note that to improve computational performance, it 

is preferable to avoid division operations as they are significantly slower than multiplications on most 

CPUs. For this reason, any division by a constant, in the following formulae, is replaced in the actual code 

by multiplication by the reciprocal.

Rendering Model

The ray tracing engine developed for this study was aimed at producing a fast, yet well-featured, Whitted-

style ray tracer using a modestly enhanced Phong illumination model. This approach has been adopted as 

something of a benchmark for ray tracers and was felt to provide a good balance between rendering time 

and image quality. The code has been structured to allow alternate rendering models to be integrated at a 

later stage, but this structure does not effect the core operation of the ray tracer and the details of its 

implementation will be discussed separately in the design methodology chapter.

The Local Illumination Equation

The Phong illumination formula has been widely used in all fields of computer graphics and it is worth 

revisiting in detail further to understand its strengths and weaknesses. A Cornell box (Cornell University 

1998) scene is used to illustrate the contributions provided by the separate parts of the equation. It is also 

useful to use a well known scene for comparison with other published rendering systems as often problems 

can be diagnosed visually rather than by inspecting code. As for the Phong equation1 itself, it can be 

expressed as follows:

C=k a Cak e Ce∑
l=1

nl

Ad kd CdL⋅Nks CsV⋅R



This may be understood as the ambient light level plus any emission from the surface and for each light 

source in the scene, terms for diffuse and specular reflection which are attenuated due to the light's distance 

Ad. In this formula, all surfaces with a diffuse coefficient are assumed to be perfect Lambertian reflectors 

and so the reflection intensity is proportional to the cosine of the angle between the lighting direction L and 

1 The Phong illumination equation is quoted by numerous authors but often with subtle variations! The emission term is 
often omitted as is the attenuation term for the lights. Watt (1989, 52) also adds a view distance attenuation to the equation 
for visual cueing. It is also common to quote the modified Blinn-Phong equation which replaces R.V with N.H, where H is 
the halfway vector (Blinn 1977) but this is not strictly the Phong model. The form of the equation given here is the author's 
representation.
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the surface normal N. This is calculated by taking the dot product of these two vectors2. The specular 

element is a convenient approximation for the observed highlights on glossy surfaces. It is not, however, an 

attempt to accurately model the real surface's micro-facet reflections. Again the use of a dot product 

provides a reasonably fast way of evaluating an angular quantity by avoiding costly trigonometric functions. 

It should be noticed that by including the view direction vector V, this calculation is view dependent. The 

last vector term R is the direction of ideal reflection for the considered light source. The exponent in the 

formula σ has no direct physical meaning, but controls the size of the highlight produced. Low values 

produce a dull, widely spread, highlight. Higher values, a smaller, brighter one. 

The colour values C, Ca, Ce, Cd, Cs are all spectral quantities typically represented by n-tuples of discrete 

wavelength. In the case of an RGB based system such as this, they represent 3-tuple values. This equation 

must be evaluated on each of the colour channels in turn. Lastly the scalar constants ka, ke, kd, ks are control 

values in the range of 0-1 that govern the relative proportions of the individual terms of the lighting 

equation. The Cornell Box scenes in Figure 2 are used illustrate the visual contribution of each of these 

terms to the final scene.

C = k a Ca + k eCe + ∑
l=1

nl

Ad kd Cd L⋅N + ∑
l=1

nl

Ad ks CsV⋅R 


Figure 2: The visual components of the Phong equation.

The Phong equation is powerful and, as ray tracing computations go, relatively fast. It does however suffer 

from a few limitations. The first noticeable limitation is the completely flat nature of the ambient lighting. 

This is due to the ambient being determined by a constant value. Not only does this affect the believability 

of shadow regions, it also has the effect of reducing the dynamic range of the whole image.

There have been many suggestions as to how this can be improved. The rigorous methods involve some 

form of global illumination, but this is not viable for an interactive system. Ambient occlusion culling 

(Bülthoff and Langer 1999) would be useful for terrain scenes, but not for fully enclosed ones like the 

Cornell Box. Additionally, the requirement to extensively sample the occlusion level at all visible surface 

intersections makes this computationally expensive.

2 Provided they are both normalised. This system maintains all vectors in normalised form.
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Gooch et al. (1998) proposed a system for directional variation in the colour temperature of the ambient 

value from warm to cool as the surface normal diverges from the light direction to produce shadow detail. 

This works well for technical illustration images, but is not so suited to general scenes. It is also a per-light 

calculation which could become costly for complex scenes. However, the idea of varying the ambient light 

level by some simple function as a better approximation of the scene's diffuse inter-reflection is excellent 

and a simpler approach is implemented here. The ambient constant ka can be optionally modulated by the 

vertical orientation of the surface. Since the surface normal's Z3 coordinate is the cosine of this orientation, 

it may be directly employed to produce the ambient modulation Ma:

Ma=k a 1Nz/2

Here the ambient level is at full intensity for surfaces with a zenithal normal and zero when antizenithal. 

This provides a better approximation to global illumination than a constant term and preserves the full 

dynamic range of the final rendered image. When this is substituted into the standard Phong equation, the 

modified rendering equation used by the experimental system becomes:

C=k a Ca 1Nz/2k eCe∑
l=1

nl

Adkd Cd L⋅Nk s Cs V⋅R 



Figure 3 shows the visual difference between a constant ambient level and one using Nz modulation. The 

second image has a greater dynamic range than the first and the shape information is more discernible in 

shadow regions. From an interactive point of view, the main advantage of this method is that it re-uses a 

term that is already calculated by the system and so the computational impact of its use is minimal. 

Figure 3: Comparing constant and Nz modulated ambient terms.

3 This system employs a right handed coordinate system with Z being the vertical axis (see Watt 1989, 2). It would be 
necessary to use Ny in other systems that use Y as the vertical axis.
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The main limitation of Phong illumination can be seen by comparing Figure 2 with Figure 3: there are no 

shadows! Both renders in Figure 3 used recursive ray tracing to generate these shadows and this will be 

explained in the next section.

Ray Surface Interactions

In a Whitted recursive ray tracer there are three processes that occur at each surface intersection: occlusion, 

reflection and refraction. Their results are combined to produce the final ray colour. The occlusion is 

calculated by a process of tracing a ray from the point of intersection to each light source in turn. If there are 

any intervening objects then the point lies in that light's shadow and it doesn't contribute to the result.

This is a trivial process for any light that may be approximated by a single point. Unfortunately, this is not 

true for most lights and their physical area must be considered. The most reliable method for rendering area 

lights is to generate multiple shadow rays which randomly sample a target point on the source. 

Figure 4: Point source shadows compared with area shadows at 8 and 256 sample rays.

Unfortunately, a large number of rays are required to avoid 

excessive noise in the final render and so it is not currently 

possible to employ this method in interactive rendering (see 

Figure 4). Fortunately, approximating the sun as a distant 

point light source, whilst generating rather harsh shadow 

margins, is not unreasonable for terrain visualisation and this 

is the technique used in the renderer.

The most mathematically complex part of a ray tracer 

concerns the determination of ray paths for reflective and 

transmissive materials. The following section details the 

equations used. Where they are used unaltered from 

published texts, they are repeated with reference to their 

source. Where this system employs any modification to the source works, the derivation is shown.
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The algebraic values illustrated in Figure 5 are defined as follows:

N The surface normal. i The incidence angle.

I The incident light vector. r The reflection angle.

L The light direction vector. t The transmission (refraction) angle.

R The reflection direction vector. i The incident medium refractive index.

T The transmission direction vector. t The transmissive medium refractive index.

 The index of refraction.

Note that the vectors L and I are the negations of each other and it is important to insure the correct one is 

used in a given context. So algebraically:

L=−I

The following calculation (Watt 1989, 166) is used to determine the reflection vectors:

R=I2 Ncos i

However i need not be evaluated as:

cosi= L. N or cosi=−I. N

Therefore the actual computation performed by the renderer:

R=I−2 I. N N

The transmission vector is somewhat more complicated to determine. It requires an application of Snell's 

Law which defines the relationship between refractive indices and the angles of incidence and refraction. 

Snell's Law (Humphreys and Pharr 2004, 419) is taken as:

i sin i=tsin t  

and the index of refraction is determined by:

=t /i

Therefore:

sin t =i /t sin i=sin i/

Given the well known identity:

sin 2=1−cos2

P. F. Michell 19 0059502



Therefore:

sin t
2
=sin2

i/
2

cost
2
=1−sin2

i/
2

cost
2
=1−1−cos2

i/
2

cost
2
=1−1−−I. N 

2
/

2

cost
2
=1−1−I. N

2
/

2

cost= 1−1−I. N
2
/

2

Since:

cost=− N. T

Therefore, the perpendicular component of T is:

Tperp=− 1−1−I. N
2
/

2 N

Since Snell's Law defines the ratio of the sines of the incidence and refraction angles and these are also the 

magnitudes of the lateral components of the direction vectors (Buss 2003, 240). This implies:

Tlat=
i
I lat

t

Since I lat (Buss 2003, 240) may be determined by:

I lat=I−I. N N

Therefore:

Tlat=1/I−I. N N

Finally this gives:

T=TlatTperp

T=1/I−I. N N− 1−1−I. N
2
/

2 N

As previously mentioned, it is desirable to avoid division in actual computational code, therefore the inverse 

index of refraction is used in this system and is defined as:

=1 /=i /t
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This then gives the final transmission equation used in the renderer as:

T=I−I. N  N− 1−
2
1−I. N

2
 N

As noted by Buss (2003, 241) the expression under the square root must not be negative. Consequently, a 

test is performed to ensure:


2
1−I. N

2
1

There is a physical significance to this threshold. If it is exceeded, then total internal reflection occurs. If 

this occurs in the renderer, a null transmission direction vector is returned and the reflection coefficient is 

set to one. Figure 6 shows a Cornell box where the spheres exhibit reflection and refraction.

Anti-aliasing Techniques

The quality of a ray traced image can be greatly improved by supersampling, a process of generating more 

than one ray per image pixel and averaging them. Figure 6 used 256 samples to generate a very high quality 

image. Contrast this with Figure 3 where no supersampling was performed at all. The key to effective 

supersampling is choosing a good distribution of a minimal number of sample rays to achieve acceptable 

image quality. The performance impact is directly proportional to the number of rays required.

Humphreys and Pharr (2004, 279-350) give extensive treatment to supersampling methods, most of which 

were implemented in the renderer. Unfortunately, due to the high computational cost of most methods, only 

vertex interpolation supersampling can be performed interactively.
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This approach traces rays at the corners of each pixel. These corner values are then averaged to achieve a 

coarse form of supersampling. The performance advantage of this method comes from the fact that for an 

N×M image only NM−1 additional rays need to be cast. The main fault of this method is that it 

slightly blurs the final image.

For non-interactive rendering, adaptive supersampling was found to give the best time to quality ratio for 

most images. It works by performing an initial pass, similar to vertex interpolation, and where it finds a 

significant discontinuity between the values, it dynamically adds additional rays until a specified 

convergence is achieved. Figure 7 compares these supersampling methods, note that the red pixels in the 

adaptive diagnostic image indicate the pixels that are identified as requiring further sampling.

No Supersampler Interpolated Vertex Adaptive Diagnostic Adaptive Supersampler

Figure 7: Small renders illustrating supersampling methods

Water Rendering Model

For dielectric materials (most translucent materials such as water and glass) both reflection and refraction 

occur and whilst terrain models can be treated as pure Lambertian diffuse reflectors, this is clearly not the 

case for water. Consequently, for a realistic simulation of large-scale water bodies, both phenomena must be 

employed. However, the relative contribution between the two of them is not constant. Water is almost 

entirely transparent when viewed from a perpendicular point of view, but from an oblique angle, the water 

surface becomes highly reflective.

This balance is determined by the Fresnel reflectance coefficient f and this is calculated by the formulae4 

taken from Humphreys and Pharr (2004, 419-420):

rpar=
t cosi−i cost

t cosii cost

rperp=
i cosi−t cost

i cosit cost

f=rpar
2
rperp

2
 /2

4 These equations are actually a common simplification of Frenel's equations for unpolarised light.
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Once the ray dependent Fresnel reflectance coefficient is found, it is combined with the surface material's 

reflection rm and refraction tm parameters to determine the final proportions of reflectance r and refractance 

t to be returned in the ray colour. Note that the system requires that the data observes:

rmtm=1

The final coefficients are determined by:

t=tm 1−f 

r=rmf tm

There are two further requirements for effective water simulation. The first is to implement ray attenuation 

observing Beer's Law (Humphreys and Pharr 2004, 576). The second is to chaotically perturb the water 

surface to emulate ripples. Without these, water looks unnaturally clear and still. Beer's Law defines the 

transmittance τ through a medium with a unit absorbence σ over a given distance d and is expressed as:

=e−d

This phenomenon is wavelength dependent and in an RGB system this must be applied per colour channel. 

To determine the resulting colour Crgb given the material surface colour Srgb, the deep water colour Wrgb, the 

absorbency coefficient Σrgb and the ray length l, the following three expressions are employed:

Cr=Sr Wr1−e−r l
 Cg=Sg Wg 1−e−g l

 Cb=Sb Wb1−e−b l


The surface perturbation ripples, are achieved by adding small random values, taken from a standard 

homogeneous noise function (Perlin 1997), and applying them to the surface normal's X and Y components5 

and renormalizing the vector. Figure 8 is a high resolution anamorphic aspect ratio image that demonstrates 

all of the features of the renderer's water shader.

5 This process is only applicable to a surface such as water that is always a plane perpendicular to the cardinal Z axis.
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Figure 8: Lake District OS NTF data flooded to 200m to demonstrate water shader



Atmospheric Attenuation Model

The key feature of ray tracing for large scale terrain visualisation, that really sets it apart from scan-line 

rasterisation, is the ability to efficiently simulate atmospheric absorption and scattering. Unfortunately, ray 

attenuation in air is much more complex that a simple treatment with Beer's Law and has to be dealt with by 

a completely separate process from the ray attenuation performed in the water model.

Given the aim of producing an interactive renderer, it was immediately apparent that any form of volume 

tracing was going to be far too computationally expensive. This would be desirable for high quality image 

production, but was beyond the scope of this project. So after reviewing the non-volumetric options one 

common feature was noticed: it was very common to find the sky colour for a given scene stored in a sky 

dome data structure and then, at render time, ray sky colours were interpolated from this structure.

The experimental renderer employed an altitude and azimuthal structured dome for ease of access. This 

does have the inefficiency of clustering too many points near the zenith. In practice, it is unusual to look 

straight up and so this region of the sky dome is rarely considered. It would probably be more efficient to 

store the data in a geodesic dome based structure, as this would evenly distribute the points over the surface. 

However this was not verified experimentally. The sky colours of this dome are populated from empiric 

RGB6 data statically compiled into the renderer. This is then spline interpolated from the sky dome vertices 

for the ray's direction vectors.

A second hemispherical data structure with its pole inclined to align with the solar position is also blended 

with the sky colour in an attempt to create solar glare. In practice, this had very little impact upon the render 

due to the renderer's lack of high dynamic range handling. This will be discussed later in the findings.

The sky dome was used to directly colour the background in the scene, but the remaining issue was how to 

implement aerial perspective without too high an impact on the render times. White linear fogging was 

implemented as a control test and so that its performance could be compared with OpenGL scenes 

performing the same operation.

The first actual sky model attempted was to adapt linear fog to take it's attenuating colour from the sky 

dome sampled in the ray direction in a similar manner to Nielsen (2003, 41) and perform linear blending 

over the scenes meteorological range. This worked quite well for short ranges, but had the unfortunate side 

effect of making everything beyond the meteorological range disappear. Musgrave describes this model as a 

homogeneous and isotropic GADD (Ebert, Musgrave et al. 1998, 363). He points out that the fault with it is 

that the real atmosphere does not have homogeneous density, but that the optical density of the atmosphere 

decreases exponentially with altitude above sea level.

6 Values were taken from high quality digital photographs of clear skys.
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Musgrave (Ebert, Musgrave et al. 1998, 364-371) discusses progressively more complex GADDs, but in 

order to maintain interactivity, further enhancement was limited to simply adding the logarithmic optical 

density. This was handled using a formula derived from Nielsen's (2003, 75) approximation:

=e−hvht /2 s

This equation models the logarithmic integral for calculating the optical depth τ where hv is the elevation of 

the view point ht the elevation of the target and s the atmospheric scale height for the prevailing conditions.

The images of Figure 9 illustrate the progressive development of the atmospheric model used in the 

experimental renderer. Note the weakness of linear fogging that colours all terrain beyond the 

meteorological range white. A similar flaw exists with the linear sky model that causes the terrain to 

disappear.
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Figure 9: Yosemite USGS DEM renders comparing atmospheric models



The final cost of employing the exponential altitude attenuation model was only one tenth of the overall 

rendering time as many of the arithmetic values required are already calculated as part of the ray tracing 

process. It has the visual property of local fidelity to nature, but it is not without faults.

The model actually assumes that the world is flat. This is due to there being no discrete integral for a 

spherical logarithmic atmospheric model. Such a system would require a numerical solution, which would 

be much slower to compute. The problem occurs with infinite horizons always appearing indistinct. This is 

visible if there is a sea plane in the image. As the ray intercept tends towards the infinite horizon they 

receive exceptional levels of attenuation. In reality, the horizon is at a finite distance and should be distinct 

on a clear day.

Figure 10 demonstrates a scene exhibiting the atmospheric model simulating dawn conditions over the Lake 

District. The solar altitude angle is 15°. The atmosphere has a meteorological range of 10km and a scale 

height of 1000m which is similar to low-lying water vapour.
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Figure 10: Sunrise over the Lake District from OS NTF data



Terrain Grid Tracing Model

The terrain traversal method adopted was based 

upon the space partitioning work by Amanatides 

and Woo (1987) for tracking the ray path over the 

terrain grid. This was combined with a very 

efficient surface intersection test described by 

Kaufman, Qu et al. (2003).

They also employed a multi-resolution, level of 

detail scheme to reduce the number of intersection 

tests required. This was not implemented here since 

it requires a significant pre-processing stage which 

would have to be performed per-frame unless the 

data being rendered could be guaranteed to remain constant. Also the multi-resolution maps for large terrain 

datasets would consume significant quantities of main memory.

The terrain intersection test was also simplified from the method of Kaufman, Qu et al. (2003) since their 

approach allowed the terrain to be rendered from the underside. This is not required for terrain rendering 

and an edge intersection below the surface level was deemed to hit the side of a solid wall (Figure 11) and 

so only hits form above needed testing for. 

Parallelism Model

One of the key academic goals of this project was to evaluate different models of parallelism for ray tracing. 

In order to be able to make base-line comparisons, the actual render module was designed to be invoked by 

a task manager in several ways. It could be executed by cooperative multitasking within the main program 

thread. It could also be invoked, pre-emptively, as a separate process. A third mode enabled multiple 

instances of the renderer to be executed as data-parallel tasks, operating on different scan-line blocks of a 

shared image buffer. This approach had the merit of ensuring that the exact same sequence of instructions 

was always being compared within the different parallelism models.

By virtue of using operating system threads, the same binary was execute on both single core CPUs using 

threaded concurrency and on multiple core CPUs with true parallel execution. In fact it was possible to 

utilise both concurrent and parallel execution on multiple cores, as the number of threads need not match 

the number of cores. The practical implications of this are discussed further in the findings. This software 

architecture is represented diagrammatically in Figure 12. This design enables investigation of the a priori 

domain decomposition, as well as the gross functional decomposition of separating the renderer from the 

host application.
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Figure 11: Terrain tracing showing solid grid edge



The actual data partitioning applied for 

domain decomposition was an equal division 

of image scan-lines between the tasks. This 

had the merit of being very simple to 

implement, although as Chalmers discusses 

there are issues with tasks being unbalanced 

(Chalmers et al. 1998, 36). In the Cornell box 

test scenes, the sphere with refractive 

properties was noticeably more expensive per 

ray than other parts of the scene. For 

landscape scenes, large areas of water and rays 

grazing the horizon were also computational 

hot spots! Cost prediction algorithms where 

considered, but in practice, it was found that increasing the number of tasks to a level that ensured difficult 

portions of the image were spread between the tasks, was quite sufficient to keep both cores of a dual core 

CPU active. Given that the aim is to produce an interactive system, introducing any time intensive pre-

processing was considered to be a poor design choice.

Algorithmic functional decomposition was also investigated. The first method considered was splitting the 

ray path determination from surface shading. This split exists in the existing subroutine structure and was an 

obvious candidate to explore. However, when the rendering process was profiled, typicially 90% or more of 

the actual task was spent testing for object intersections and not a balance between the two. Consequently, 

there would be no real performance gain from this decomposition as the overwhelming requirement was to 

split the scene database search, which in reality is a domain decomposition. Since this can already be 

efficiently achieved by executing multiple render tasks, there was no merit in pursuing this algorithmically.

A further finer grained decomposition was investigated out of academic interest, even though it would 

suffer from the same practical weakness as the previous method. This algorithmic decomposition was 

suggested by closer examination of the Phong equation, which could be conceptually expressed as:

C=Fa  i Fe iFd i Fs  i

Which is a series of functions that determine the ambient Fa, emissive Fe, diffuse Fd and specular Fs 

components for a given surface intercept i. If the whole Whitted function is considered, then occlusion Fo, 

reflection Fr and refraction Ft must also be added. The algorithmic decomposition then becomes:

C=Fa  i Fe i∑
l=1

nl

Fo  i , lFd i , lFs i , lFr i Ft  i
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Figure 12: Experimental Renderer parallelisation model
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The actual code of the ray tracer was restructured to follow this conceptual scheme, but in so doing a further 

weakness of this approach became apparent. Once the individual functions were created they each consisted 

of only a few lines of code and yet the shading process per ray, had expanded from a single function call per 

surface interaction, to four plus an additional three per light source! Even before threaded communication 

code was introduced, the communication over-head was considerable. Add to this the potential for pipeline 

stalls once running in parallel and the fact that at best it could only account for 10% of the total execution 

time, meant it was not worth pursuing as a means of enhancing performance.

It should be noted though that this process did have two beneficial side effects. Firstly the shading 

algorithmic decomposition enabled renders to be produced that displayed individual terms of the rendering 

equation (see Figure 2) and this had didactic value in conceptualising the behaviour of the equation. 

Secondly it enabled several coding errors to be uncovered that would have been much harder to notice 

buried inside a monolithic shading function.

On reflection, it should not be too surprising that algorithmic decomposition has limited value in 

performance tuning ray tracing, since it is a process that has undergone decades of careful honing for fast 

execution on serial processors. Algorithmic decompositions are known to be much harder to find on 

processes that have highly optimised algorithms. The historic goals of creating fast code with few branches 

and tight inner loops, is at variance with the process of isolating individual code functions and loosely 

coupling them as this inherently adds additional layers of communication to the whole process.
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Chapter 4

Methodology

There were many practical considerations to the actual process of creating the experimental renderer that 

need to be mentioned. This section will examine these along with a description of the methods for testing 

the performance attained by this experimental system.

Development Environment

Before any coding could begin the choice of target operating system and development tools needed to be 

addressed. One increasingly clear concern is the problem of investing significant amounts of time into 

developing code that becomes locked into a particular operating system or chip architecture. A further 

important consideration is using a computer language that can achieve optimal performance from the 

underlying hardware. Given the performance related goals of this project, failing to generate good quality 

code might adversely influence the results. 

Previous experience with native code compilers for C and Pascal, suggested they would be more suited than 

Java, C#, or other popular semi-compilers, even though the latter usually offer a much more comfortable 

development environment and are generally more productive in terms of code written per day. To avoid 

vendor lock-in, open source compilers were preferable, especially ones that are capable of producing 

portable code.

The author has had considerable experience of commercial programming in Delphi (CodeGear 2007) and 

was inclined to make direct use of this experience. However, Delphi has been struggling over the last few 

years to maintain it's status in commercial development and has been eclipsed by both C# and Java. Also 

Delphi makes no pretence to being cross-platform. Indeed its visual component library is a thin object 

orientated layer over the Windows API and the compiler can only produce Windows executables.

Given the meteoric rise of Linux in the professional computing world and its growing acceptance in wider 

user circles, it was felt that the ability to target this platform was important, not to mention the additional 

desire to keep the renderer code platform independent. Fortunately, there is an open source project called 

Free Pascal (Free Pascal Team 1993) that aims to produce a Delphi-like (but not strictly compatible) cross-

platform compiler. This compiler has been showing considerable promise for several years. It is already 

targeting a good range of CPU architectures and has production quality support for Linux and Windows 

both for 32 and 64 bit Intel processors.
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It's main limitation was that, until very recently, it did not have a professional quality IDE. However, just as 

this project was started, a promising development platform called Lazarus (Lazarus Team 2003) was 

reaching late Beta stage. The decision was taken to take the risk of using this, with the fall-back plan of 

reverting to using Delphi on Windows, if the code quality produced by Free Pascal/Lazarus proved to be too 

unreliable. This has proved a fortunate choice as both projects have gone from strength to strength over the 

intervening two years. It now boasts full visual development in an editor not unlike Delphi version 6; it can 

handle graphical debugging; visual user interface creation and trivial project recompilation on any 

supported platform to native code. Most impressive of all, Free Pascal1 is capable of optimising, compiling 

and linking the 76,000 lines of the renderer program in under 6 seconds!

Choosing a Linux distribution for general desktop use as well as Lazarus based development was far from 

trivial and in fact, six different distributions were used through out the life time of this project. All have 

suffered from one limitation or another. Space does not permit a complete account of the issues involved, 

but the eventual winner was Kubuntu (Canonical 2006). This has a modern user interface, reliable software 

installation tools and is very stable in operation. This was installed in a dual boot configuration with 

Windows XP Media Edition so that direct comparisons could be made between executables created for 

either operating system.

1 The version being used for Linux development for this project is 2.0.4.

P. F. Michell 31 0059502

Figure 13: Lazarus IDE running on Kubuntu desktop



Parallelism Tools

When writing code for parallel execution with a compiler designed for creating serial applications, 

additional libraries are required to create multiple processes and coordinate their communication. The two 

most popular libraries for providing these facilities are PVM (PVM n.d.) and MPI (MPI 2007). PVM is the 

older and currently less supported of the two. Pascal translations of their header files are available for both 

systems and they can be used with Free Pascal.

On closer inspection of the renderer's requirements, it was realised that very little coordination would be 

needed between the processes and where it was required, critical sections could be used. Free Pascal has 

very thorough support for native OS threading, so it was decided that this would be used instead. In fact 

Free Pascal provides a higher level object orientated wrapper for the thread handling. This was directly used 

as the parent class for the task manager and the rendering task objects.

This proved to be a very efficient approach that had minimal inter-process communication overhead. It also 

removed the need for dependency upon an external library. The only limitation was that the thread library 

does not support remote threads and so there is no immediate scaling to network clustering. There is another 

Free Pascal library that encapsulates the TCP communication protocol. This could be combined with the 

threading unit to provide this facility and it is hoped that this will be implemented in future developments to 

this system.

Development Process

Careful design was an important feature of this project, as was rigorous testing at each stage of progression. 

Low level code was developed using classic structured programming methods. Code modules were closely 

monitored to preserve loose coupling and to remove any unnecessary dependencies. Particular emphasis 

was placed upon achieving good platform independence. High level code took advantage of Free Pascal's 

object orientated extensions and implemented all conceptual entities as code objects.

Cross-platform compatibility was tested by the simple practice of daily alternating between Linux and 

Windows as the development platform. Lazarus itself was also undergoing considerable change throughout 

this period and it was updated daily using the Subversion (CollabNet 2006) code revision management 

system maintained by the Lazarus team.

The three main sources of complexity, the renderer, GIS data handling and parallel control code, were all 

developed and tested autonomously and then combined to produce the final test program. The renderer in 

particular, was first developed in isolation. It employed the simple Cornell Box test scene to verify its 

rendering fidelity by comparing the output with the official renders published on the Cornell University 
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Website (Cornell 1998). This scene's simplicity was also useful for visual inspection of the reflection and 

refraction code output. Whilst this was a slow process, it did ensure a good degree of code maturity in the 

base units of the final application.

Testing Procedure and Performance Analysis

Benchmarking a computer process is a notoriously difficult activity! Both hardware and software 

configurations can have a dramatic impact upon the operation of any program. During code optimisation 

low level subroutines were profiled by counting CPU cycles. This is a useful relative measure of how 

efficiently a given section of code performs. However, this does not translate to overall performance, 

especially in a system executing parallel or even concurrent processes. 

In the final analysis, the performance that is important is the performance as perceived by the application 

user. This has to account for interaction with the operating system and other processes, as this is how it 

would be used in practice. For this reason the benchmarking mechanism used was a simple stopwatch type 

algorithm using the system timer. While not accurate to the same precision as the clock frequency of the 

CPU it can still attain accuracy within hundreds of a second. External variabilities were reduced by having 

no other applications running during testing and switching off all network connections. The renderer also 

had a special operating mode which can switch off screen updates during frame rendering as this was found 

to be a very considerable source of variability. Lastly for any given test, the result recorded was an average 

of ten renders. 

One key objective is to assess whether terrain ray tracing can now be performed at interactive frame rates. 

To make this assessment a definition for what constitutes interactivity must be established. Various 

dictionary definitions merely imply providing an immediate response. What is considered immediate is a 

psychological perception that varies from one person to another. Another related metric is the notion of real-

time rendering. This is subtly different as it implies capability to provide smooth animation. Again what is 

smooth? 

To answer this question it is worth looking at the standards employed in other fields. Film and video 

typically require 24fps although early films were hand cranked at 16fps (Davis et al. 1999, 21). Modern 3D 

computer games often strive for higher frame rates than this, although anything higher than the monitor 

refresh rate2 is pointless as it cannot be noticed by the user. Early computer games refreshed the display at 

between 10-15fps. CAD 3D visualisation usually requires render times to be considerably less than a second 

for sufficient feedback to allow interactive changes in view point. So it would seem from these observations 

of usage that real-time rendering requires over 10fps and over 20fps to be considered of a standard suitable 

for modern animation. Interactive rendering is therefore less than real-time but over a psychological 

threshold in the region of a quarter of a second.
2 Typically 50-120MHz.
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Chapter 5

Findings

Three tests were performed with the renderer. The first examined the optimal number of threads for a range 

of different CPUs. The second examined the relationship between resolution and rendering time and the last 

investigated the relationship between terrain data size and rendering time. The scene used for the first two 

of these tests was the fractal landscape shown in Figure 11. 

Thread Configuration Analysis

This analysis involved running the multi-threaded renderer on several systems with very different CPUs. 

The number of threads used ranged from 1 to 10 and then in 10's from 20 to 100. Each measurement was 

taken ten times and the average recorded. The output was at VGA resolution and the render included a water 

plane and shadows. Figure 14 displays the results.
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Figure 14: Thread performance analysis graphs

As expected the two newest systems produced the fastest results. It is particularly interesting that the lower 

speed Core Duo (1.83GHz) significantly out performed the much faster Pentium 4 (3.2GHz). This must be 

due both to the dual cores executing in parallel and also refinements in the chip design, since even with a 

single thread, it was still considerably faster. It is interesting to note that the performance curve of the 

Pentium 4 matches the shape of the Core Duo's very closely. This must be due to the hyper-threading 

abilities of the former which do clearly add significant processing power to additional threads. More 

surprising was the performance graph of the old Pentium III. This has no hyper-threading, but still achieved 

a large performance gain when utilising multiple threads. 

It was observed that the graphs become almost flat after 30-50 threads on all CPU's. It would seem that the 

overhead for using threads is minimal and a large number does not cause much of a performance penalty. 

Consequently it would be best to always err on the side of too many rather than too few threads. 
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Resolution Analysis

This analysis investigates the relationship between ray tracing and render size. A range of common screen 

resolutions from quarter VGA up to high definition television were selected and average render times 

plotted against their pixel counts. Four datasets are recorded. The first is for basic grid tracing only. The 

second includes shadow detection and the next also includes atmospheric modelling. The last model 

introduces a water plane into the scene as well.
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Figure 15: Image resolution analysis graph

Theses results corroborate very closely, the theoretical linear relationship between image size and ray 

tracing execution time. It should also be noted that the addition of the more advanced rendering features 

only has a proportionate impact on render times.

Terrain Size Analysis

For this analysis, a range of synthetic terrain files were rendered at VGA resolution, both by ray tracing and 

by OpenGL1. The results were plotted against the number of samples in the terrain.

These results show the linear nature of OpenGL 

with scene size, contrasted with the logarithmic 

nature of ray tracing. The key result to note in 

this test is the crossover point between the 

datasets at around 1M quads. This suggests, that 

even limited to current systems, very large-scale 

model rendering is already better suited by ray 

tracing.

1 The OpenGL was hardware accelerated by an Nvidia GeForce Go 7800.
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Figure 16: Terrain size analysis graph
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Other Observations

All of the formal experiments were made using the multi-threaded renderer. It is worth mentioning that this, 

even with a single thread, out-performed the non-threaded renderer on all of the systems tested. This is 

perhaps an indication of the extent to which the OS interacts with the main loop of an application. Therefore 

any processor intensive task would probably benefit from being functionally decomposed from the host 

application in this manner.

Despite careful steps being taken to reduce background tasks, there was significant variation in the 

execution times of all individual tests. This is simply a fact of life on a modern OS and so when considering 

performance requirements for production systems, a suitable margin of error should be allowed for this 

contention. Not only are fluctuations caused by OS activity, some are caused by cache misses and uneven 

load balancing between threads. Cache use in a parallel system is very unpredictable and for large scenes 

there is probably not very much that can be done about this. Uneven loads, can to some extent, be 

ameliorated by running more threads with little penalty, given their relatively low overhead as established in 

the first analysis.
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Chapter 6

Conclusion

There are may conclusions that may be drawn from a study such as this, which has touched upon the 

research of several disciplines, in the hope of combining them for use in another. Some are reflections upon 

the work undertaken, others insights into future directions that might be explored.

Research Reflections

The first consideration has to be was the experimental renderer adequate for the purpose it was designed? In 

the main, the answer has to be yes. It enabled the use of classic ray tracing methods to produce images of at 

least comparable quality to hardware rasterisation. It did so in conjunction with fast terrain grid tracing and 

thread based parallelism.

Nonetheless, there are still things that could be improved or added: There are still occasional rendering 

artefacts that are caused by problems with numeric precision in the ray tracing code; The choice of planar 

atmospheric model inhibits sharp horizons and not handling high dynamic range prevents the sky glow 

around the sun from being as bright as it should. Additionally, there is still scope for generally improving 

the quality of the code and further developing the algorithms that have been employed.

With regard to the analysis of the system. It would have been useful to have spent more time on developing 

tools to automatically perform benchmarking tasks, since running multiple tests by hand proved very labour 

intensive. With hindsight, it would also have been interesting to test a far wider range of rendering 

situations, especially to try and quantify the worst case conditions, such as rays that graze the horizon over 

very large models.

Given the goal of interactivity: has this been achieved? Well, sub-second render times are available for 

WQVGA and QVGA resolutions. This can feel stilted when the times start approaching one second, but it is 

generally usable for dynamic  previewing for a high resolution image. It should be noted that HDTV quality 

images can be subsequently produced in well under 30 seconds for virtually any terrain size on the faster 

machines tested here. 

Unfortunately in a commercial product, there are few users who would be content with such low image 

resolutions and a more realistic goal would be to aim for VGA or DVD quality. To achieve this, there would 

need to be a fourfold increase in performance. To reach this the program would need further enhancements. 

There is still scope for optimisation within the code, most notably by hand tuning the grid tracing routine as 

this accounts for 80% of execution time. Also the use of instruction level functional decomposition and 

further exploiting the spatial coherence of terrain models would yield significant improvements too. 
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Between these methods the current render times could be halved. If quad-core CPUs give the same 

performance improvement that dual-core chips do, then that could account for the rest of the power 

required. 

It should be borne in mind, that for very large terrains, OpenGL isn't capable of interactively rendering the 

scene either. In fact it is more likely that ray tracing will achieve this before rasterisation does for the 

reasons previously discussed. Indeed this research closely agrees with Slusallek and Wald (2001, 29) who 

found that their software ray tracer running on a single CPU outperforms the best hardware rasterization 

engines for scenes with a complexity of roughly 1 million triangles. This proves to be very similar to the 

threshold in this system where a dataset size of 1024x1024 is the break-even.

Further Work

Since data partitioning is embarrassingly parallel on shared memory systems (Slusallek and Wald 2001, 30) 

we should be able to expect linear, or near linear performance on multi-core CPU's. Quad core CPUs have 

only just become generally available at the time of writing and it is unfortunate that it was not possible to 

include one in this test. It would be the obvious first step of furthering this project, to see if they do indeed 

impart a further linear performance gain over dual core chips.

Related to this would be to explore the extension of the system into clustering. This is where multiple 

machines on a network could all contribute to the image creation by acting as rendering nodes. If each 

machine rendered one tenth of a VGA image, 10 machines could render the scene in one tenth of the time, 

plus any communication overhead. Even allowing for very poor communication this would complete in 

around half a second. It would be very interesting to see how far this approach could be perused before 

practical constraints came to the fore.

For use in a production role, there are several issues that would need to be addressed. For robustness it 

would be useful for tasks to able to communicate difficulties back to the task manger. For instance, time 

intensive image portions could be re-divide if execution time is becoming excessive. In heterogeneous 

environments, CPU's might not be capable of handling an equal share of the task, or they may be forced to 

terminate their task prematurely. Users would also require inclusion of additional GIS data for overlay on 

the terrain, for example: conventional 2D mapping; aerial photographs; or visualisation of 3D surface 

features such as buildings or vegetation. Arbitrary water bodies would also be required such as rivers and 

lakes. The current method of creating a universal water level would be insufficient for these purposes.

Considerable work is still required on developing the atmospheric model. Build a volumetric model to 

assess its computational requirements would be another fruitful avenue for extending this work into high 

quality rendering.  It would also enable the renderer to produce local atmospheric phenomenon such as mist 

and clouds. Nielsen's (2003) produced an interesting study where he introduced a simplification of the 
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scattering functions for OpenGL vertex shaders, they might be suitable for adapting to ray tracing. It would 

also be interesting to compare the predicted atmospheric conditions to real observations on the ground and 

tune the model accordingly.

Given the goal of interactivity, it would be worth investigating dynamic resolution rendering. This would 

work by detecting situations where the user has triggered some adjustment to the image. The immediate 

response could then be provided by a first low resolution pass that could be displayed for direct feedback. If 

the interaction is continuous, then further low resolution frames could be generated until the user has 

achieved the desired static view. At which point the full quality render could proceed and be display as soon 

as it is complete. This would be a way of working around the immediate limits on interactivity for higher 

resolutions.

Achieving some form of intelligent load balancing would be desirable, rather than simply relying on 

generating more threads than processors in the hope of keeping them all occupied. It would be worth 

analysing if the maximum ray path length within the terrain grid's bounding volume might serve as a 

reasonable metric for computational load.

The key to optimising any ray tracer is in designing the best possible spatial partitioning. In the case of 

terrain rendering this is the grid tracing algorithm. The routine developed here, although fast, could still be 

improved by looking for ways to take advantage of terrain coherence.

The actual surface reconstruction could benefit from from a level of detail scheme. This would both 

enhance quality and improve performance. Near to the view point, it can be seen that certain terrain features 

drop below the nyquist limit of the terrain grid's data frequency. This is especially noticeable for arettes, or 

narrow gullies which take on a false saw tooth appearance. Fitting some form of spline patch might well 

yield a much more elegant surface in these contentious situations. Spline patches have been optimised for 

real-time use, as demonstrated by Benthin, Slusallek 

and Wald (2004). Similar has also been effectively 

demonstrated in the OpenRT for iso-surfaces 

(Marmitt, Kleer et al. 2004).

At present all quadrangles are subdivided into two 

triangles for the grid tracing and thus two intercepts 

are needed. A cursory analysis of surface curvature 

(Figure 17) for the Lake District data, indicates that 

less than a tenth of the quadrangles are actually non-
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planar1. This fact and the arithmetic simplicity of testing for a non-planar quadrangle would suggest an 

optimisation scheme which would remove the need two perform two triangle test in the majority of ray 

intercepts. Furthermore, if the quadrangle is sufficiently far away that it is less than an image pixel in size, a 

simple maximum height test can be used to determine intersection, rather than a full polygonal intersection 

test. This would be especially useful with larger terrain models.

One last avenue to explore might be to see if converting the renderer to C or C++ would yield any 

significant performance gain? It would be a very good test candidate to answer the question as to which 

produces the better code. It would also increase its portability by being written in C even if it were found to 

be no faster.

Final Summary

This study aimed to quantify the performance improvement that could be obtained by applying parallelism 

to a basic ray tracing program running on typical consumer systems. By showing that such a program could 

just attain interactivity, albeit at low resolution, indicates that this process holds great potential for future 

software refinement and gain advantage from future hardware development. It is also hoped that these 

results might encourage the investigation of ray tracing's uses in other spheres of computer graphics, than 

those to which it has traditionally been restricted. It has been shown that it is already the fastest method for 

very large scenes and so it can be expected to be applied more and more widely as user dataset size 

continues to place pressure on conventional rasterising systems. Lastly, there is still much to be investigated 

if new uses are to be found for this challenging field of computer science, as Chalmers (Chalmers et al. 

1998, 20) and his colleagues summarise: 

"We believe that parallel photo-realistic graphics will continue to be a vibrant research topic in 

the future." 

1 Assuming a 5% tolerance in the maximum elevation delta compared to the diagonal of the quadrangle. Quadrangles failing 
this tolerance are coloured blue on the relief map (Figure 17).
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